Volume penalization for inhomogeneous Neumann boundary conditions modeling scalar flux in complicated geometry

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive volume penalization for ocean modeling

The development of various volume penalization techniques for use in modeling topographical features in the ocean is the focus of this paper. Due to the complicated geometry inherent in ocean boundaries, the stair-step representation used in the majority of current global ocean circulation models causes accuracy and numerical stability problems. Brinkman penalization is the basis for the method...

متن کامل

A Characteristic-Based Volume Penalization Method for Arbitrary Mach Flows Around Solid Obstacles

Volume penalization is a subclass of immersed boundary methods for modeling complex geometry flows, which introduces the effects of obstacles by modifying the governing equations. The method presented in this paper encompasses general boundary conditions as an extension of the Brinkman Penalization Method (BPM) [1], which was originally developed for solid, isothermal obstacles in incompressibl...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.

متن کامل

Finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions

We consider a convective-diffusive elliptic problem with Neumann boundary conditions: the presence of the convective term entails the non-coercivity of the continuous equation and, because of the boundary conditions, the equation has a kernel. We discretize this equation with finite volume techniques and in a general framework which allows to consider several treatments of the convective term: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2019

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2019.04.008